2019 Active Transportation Program
Orange County Workshops

[Logos of Caltrans, OCTA, OC Health Care Agency, and Safe Routes to School National Partnership]
Goals

- Increase the proportion of trips accomplished by biking and walking.
- Increase the safety and mobility of non-motorized users.
- Advance the active transportation efforts of regional agencies to achieve greenhouse gas reduction goals.
- Enhance public health.
- Ensure that disadvantaged communities fully share in the benefits of the program.
- Provide a broad spectrum of projects to benefit many types of active transportation users.
Background

- California (CA) Senate Bill (SB) 99 Active Transportation Program (ATP)
- SB1 Road Maintenance and Rehabilitation Act (RMRA)
Funding

- Estimated at $445.6 million in available funds
- Fiscal year 2019-2020 through 2022-2023
<table>
<thead>
<tr>
<th>ATP Summary</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide Call</td>
<td>$218.8 million</td>
</tr>
<tr>
<td>Small Urban & Rural</td>
<td>$43.8 million</td>
</tr>
<tr>
<td>Large MPO</td>
<td>$175.0 million</td>
</tr>
<tr>
<td>SCAG / Orange County</td>
<td>SCAG: $92.6 million</td>
</tr>
<tr>
<td></td>
<td>Orange County: $15.7 million</td>
</tr>
<tr>
<td>Conservation Corps</td>
<td>$8.0 million</td>
</tr>
<tr>
<td>Total</td>
<td>$445.6 million</td>
</tr>
</tbody>
</table>
Funding

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Type</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019-2020</td>
<td>State (SB1)</td>
<td>$100 million</td>
</tr>
<tr>
<td>2020-2021</td>
<td>State (SB1)</td>
<td>$100 million</td>
</tr>
<tr>
<td>2021-2022</td>
<td>State and Federal</td>
<td>$122.8 million</td>
</tr>
<tr>
<td>2022-2023</td>
<td>State and Federal</td>
<td>$122.8 million</td>
</tr>
</tbody>
</table>
Scoring By Application Types
(Maximum Scores Possible)

<table>
<thead>
<tr>
<th>Scoring Topic</th>
<th>Plan Application</th>
<th>Non-Infrastructure only Application</th>
<th>Infrastructure or Non-Infrastructure Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Small</td>
<td>Medium</td>
</tr>
<tr>
<td>A. Benefit to Disadvantaged Communities (DAC)</td>
<td>30</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>B. Need</td>
<td>20</td>
<td>40</td>
<td>53</td>
</tr>
<tr>
<td>C. Safety</td>
<td>N/A</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>D. Public Participation & Planning</td>
<td>25</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>E. Scope and Plan Consistency</td>
<td>N/A</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>F. Implementation & Plan Development</td>
<td>25</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>G. Context Sensitive & Innovation</td>
<td>N/A</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>H. Transformative Projects</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>I. Evaluation and Sustainability</td>
<td>N/A</td>
<td>10</td>
<td>N/A</td>
</tr>
<tr>
<td>J. Cost Effective</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>K. Leveraging</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>L. Corps (0 or -5)</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M. Past Performance (0 to -10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Note: Changes since 5/14 workshop are highlighted in yellow
<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCTA Workshop #1</td>
<td>May 14, 2018</td>
</tr>
<tr>
<td>OCTA Workshop #2</td>
<td>May 21, 2018</td>
</tr>
<tr>
<td>Call for Projects</td>
<td>May 16, 2018</td>
</tr>
<tr>
<td>Applications Due</td>
<td>July 31, 2018</td>
</tr>
<tr>
<td>Staff Recommendations for Statewide Component</td>
<td>December 31, 2018</td>
</tr>
<tr>
<td>Adoption of Statewide Component</td>
<td>January 2019</td>
</tr>
<tr>
<td>Adoption of Regional (MPO) Component</td>
<td>June 2019</td>
</tr>
</tbody>
</table>
- Louis Zhao - OCTA
 Section Manager, Discretionary Funding
 714-560-5494
 lzhao@octa.net

- Paul Martin - OCTA
 Active Transportation Coordinator
 714-560-5386
 pmartin@octa.net

- Jennifer Farinas - OCTA
 Senior Transportation Analyst
 714-560-5392
 jfarinas@octa.net

- Denise Arriaga - OCTA
 Associate Business Unit Analyst
 714-560-5489
 darriaga@octa.net
Contacts

- **Marlon Regisford - Caltrans**
 Branch Chief – Policy and Technical Planning
 657-328-6288
 marlon.regisford@dot.ca.gov

- **Tifini Tran - Caltrans**
 Local Assistance Engineer
 657-328-6275
 Tifini.tran@dot.ca.gov

- **Oliver Luu - Caltrans**
 Active Transportation Coordinator
 657-328-6267
 oliver.luu@dot.ca.gov
Contacts

- **Amy Buch – OCHCA**
 Division Manager, Health Promotion
 714-834-5728
 abuch@ochca.com

- **Demi Espinoza – SRTS National Partnership**
 Senior Policy Manager
 503-739-3654
 demi@saferoutespartnership.org

http://www.octa.net/Bike/Bikeways-Planning/
OCTA 2019 ATP PROGRAM WORKSHOP:
Addressing Health in Your Application

Trav Ichinose, MS, MA
Orange County Health Care Agency (OCHCA)

May 21, 2018
CYCLE 4 QUESTION 2.A: Statement of project need. Describe the issue(s) that this project will address. How will the proposed project benefit the non-motorized users. What is the project’s desired outcome and how will the project best deliver that outcome? (0-19 points)

Discuss:

• Lack of connectivity
• The lack of mobility- If applicable
• The local health concerns responses should focus on:

 • Specific local public health concerns, health disparity, and/or conditions in the built and social environment that affect the project community and can be addressed through the proposed project. Please provide detailed and locally relevant answers instead of general descriptions of the health benefits of walking and biking (i.e. “walking and biking increase physical activity”).

 • Local public health data demonstrating the above public health concern or health disparity. Data should be at the smallest geography available (state or national data is not sufficient).
Project choice is key...consider DACs

• Chronic diseases often track with socioeconomic conditions

• Disadvantaged Communities (DAC) are often communities of concern in public health plans
 • DAC focus aligns project’s contribution to ongoing, coordinated active transportation and public health efforts.

• Promotes environmental justice & health equity

• Nets points for ATP Cycle 4 Questions 1 and 2!
What do people living in the project area say are their public health challenges?

- Include health related results of past community outreach or involvement efforts
- Integrate public health questions into new ATP community outreach scripts or tools.
- Connect with local non-profits, community groups
Location, location, location

Getting good data starts by knowing your geography

• Where are your DACs?

 • CalEnviroScreen (CES) 3.0 census tracts
 • >= 25% on total CES 3.0 score
 ◦ CES 3.0 score >= 39.34
 ◦ [OEHHA list of SB535 Disadvantaged Communities](#)

 • Low Median Household Income (MHI) census tracts
 • <80% statewide MHI
 ◦ [American Factfinder, Table ID B19013](#)
 ◦ <$51,026 via 2012-16 American Community Survey data

 • Free/Reduced Price Meal (FRPM) schools w/ 2 mile buffer
 • >=75% of students eligible for Free or Reduced Price Meals
 ◦ [California Department of Education, Student Poverty FRPM Data](#)
Location, location, location

Getting good data starts by knowing your geography

• List relevant geographies
 • Census tracts (CT)
 • ZIP codes – common public health unit
 • Relevant city boundaries
 • School attendance boundaries
 ▫ From School Districts, city GIS unit or USDE School Attendance Boundary Survey (SABS)
 • Consider those containing AND adjacent to project, even if they are outside your jurisdiction

• Map destinations and assets
 • E.g. walking/biking infrastructure/routes, schools, transit facilities, community centers, employment centers
Keep in mind...

- Geography of public health data may not conform precisely to project site or DAC
- Convey overlap of geographies
- Convey limitations of data
Use multiple lines of evidence

- **Show need across the disease process**
 - E.g. Physical inactivity > Obesity > Chronic disease (Diabetes, Heart Disease)

- **Show need across the lifespan**
 - Children, adults, elderly (if possible)
It’s all relative...

• Compare project public health stats to other comparable values
 • Project vs. State value
 • Project vs. County value
 • Project vs. Regional peer counties

• Quantify relative values
 • E.g. Percent higher than...X’s higher than...
Key statewide data sources

• **California Health Interview Survey – Neighborhood Edition (askchisne.ucla.edu)**
 - Obesity, physical activity, diabetes prevalence, general health status, asthma [ZIP, city, OC, CA]

• **California Physical Fitness Test (data1.cde.ca.gov/dataquest)**
 - Body composition/obesity, aerobic capacity
 [School attendance boundary, school district, OC, CA]

• **Healthy Places Index (HPI - healthyplacesindex.org)**
 - To be discussed shortly...
Key local data source

ochealthiertogether.org (OCHT)

- **Chronic disease hospitalization, ER utilization rates**
 [ZIP, county w/ state comparisons]

- **Obesity estimates, adults & children (5-9th graders)**
 [Varies: ZIP, city, school district, w/ state comparisons]

- **Physical activity (PA) estimates: Adults who are sedentary, walk regularly; Regular PA among children**
 [Varies: ZIP, city, county w/ state comparisons]
The Orange County Health Care Agency can help with...

- Consultation
- Data
- Letters of support
For OCHCA assistance please contact us early:

Amy Buch, M.A.
Division Manager, Health Promotion
Orange Health Care Agency
Direct: 714.834.5728
Email: ABoch@ochca.com
Data in Action: California Healthy Places Index

Orange County Transportation Authority – 2019 ATP Workshop
May 21, 2018

Bill Sadler
Director of Operations

Helen Dowling
Project Coordinator

Trav Ichinose
Steering Committee Member

public health alliance™
of southern california
A Partnership for Healthy Places
Purpose of the California Healthy Places Index

Develop a tool to support prioritization of resources and allocations to communities with poor social determinants of health
Process of Creating the HPI

Steering Committee:
- Alliance & BARHII
- Data Committees, CDPH, Others (TCE & Kaiser funded)

Social Determinants of Health

- Literature Review
- Domains
- Indicators/Geographic Unit
- Data Sources
- Index Production
- Communication/Dissemination

User Feedback
• Criteria:
 ▪ Informed by literature
 ▪ Statewide data publicly available at the census tract
 ▪ Continuity with HDI 1.1
 ▪ Actionable for policy, systems, and environmental change
 ▪ Optimize association with life expectancy
HPI’s Unique Approach

• Glaring disparities in life expectancy – 10 or more years within a 20 min. walk
• Social determinants of health, including neighborhood conditions, drive these disparities
• Life expectancy is empirically integrated into the HPI methodology
• Other indices do not have this explicit coupling
• Indicator scores are standardized (Z score)
• Policy Action Area score (mean of indicators)
• Policy Action Area weights (predictive of life expectancy)
• Final HPI calculated by
 ▪ Multiplying each policy action area score with its weight
 ▪ Summing across eight policy action areas:

\[\text{HPI} = \text{Economic} + \text{Education} + \text{Transportation} + \text{Social} + \text{Neighborhood} + \text{Clean Enviro} + \text{Housing} + \text{Ins} \]
HPI Policy Action Areas & Indicators

Economic
- **32%**
 - Employed*
 - Income
 - Above Poverty*

Education
- **19%**
 - In Pre-School
 - In High School
 - Bachelor’s Education or Higher*

Transportation
- **16%**
 - Automobile Access*
 - Active Commuting

Social
- **10%**
 - Two Parent Household
 - Voting in 2012

Neighborhood
- **8%**
 - Retail Density
 - Park Access
 - Tree Canopy*
 - Supermarket Access
 - Alcohol Outlets

Housing
- **5%**
 - Low-Income Renter Severe Housing Cost Burden
 - Low-Income Homeowner Severe Housing Cost Burden
 - Housing Habitability
 - Uncrowded Housing
 - Homeownership

Clean Environment
- **5%**
 - Ozone*
 - PM 2.5*
 - Diesel PM
 - Water Contaminants

Healthcare Access
- **5%**
 - Insured*

* Sourced from California Department of Public Health Climate Change and Health Vulnerability Indicators for California
Introduction to HPI Map Tool

map.healthyplacesindex.org
Who’s Using HPI at the State?

- **Grant Programs**
 - Caltrans: SB 1 Planning Grants: $25 Million/ year – 50% to disadvantaged communities
 - Strategic Growth Council: Transformative Climate Communities
 - California Transportation Commission: Active Transportation Program

- **Plans/Guidelines**
 - Governor’s Office of Planning and Research:
 - General Plan Guidelines
 - Integrated Climate Adaptation & Resiliency Program: Resiliency Guidebook
 - California Transportation Commission: Regional Transportation Plan Guidelines

- **Studies**
 - CDPH - Black Infant Health- Birth Outcomes

- **Mapping Tools**
 - California State Parks Community Fact Finder
Contact

Bill Sadler: **BSadler@PHI.org**

Helen Dowling: **Helen.Dowling@PHI.org**

HPI on the web: **HealthyPlacesIndex.org**
2019 Active Transportation Program
Orange County Workshops

Caltrans OCTA OC Health CARE AGENCY Safe Routes to School National Partnership
Inventory of Existing Count Data

- Bike & Pedestrian Counts at:
 - All CMP-Monitored Intersections (OCTA)
 - Over 40 non-CMP locations (OCTA)
 - Strava Data (FY 2013-14)
 - 25 Bike Counts on PCH (Caltrans)
- 141 Local Agency Bike Counts
- 3 OC Parks Permanent Count Sites
- UCLA/SCAG Bike Data Clearinghouse
Existing Available Data
New Bike Counts by OCTA

Nearly 200 new bike counts being collected Spring/Summer 2018 through ongoing Active Transportation Counts Program.

<table>
<thead>
<tr>
<th>Facility Type</th>
<th># of Existing Counts</th>
<th># of New Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Class I paths</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>B. Arterials with bike facilities</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>C. Arterials without bike facilities</td>
<td>130</td>
<td>0</td>
</tr>
<tr>
<td>D. Secondary (not including local) roads with bike facilities</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>E. Secondary (not including local) roads without bike facilities</td>
<td>79</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>242</td>
<td>24</td>
</tr>
</tbody>
</table>
New Bike Counts by OCTA
Accessing Bike/Ped Count Data

- Contact OCTA Staff for Ped/Bike Counts:
 - Available through prior data collection
 - Available through ongoing data collection

OCTA Contact
- Sam Sharvini
 714.560.5769
 ssharvini@octa.net
Collecting New Count Data

- If No Data Available, Consider New Collection
- Account for:
 - New or Enhanced Facility?
 - Pedestrian, Bicycle Serving or Both?
 - Weekday, Weekend, School-Related Influence
Collecting New Count Data

- There is Time for Data Collection!
- Today’s Handout Provides link to Caltrans “Module 5”:
 - Documenting Existing Data
 - Additional Resources
Forecasting Future Demand

- Today’s Handout Provides link to Caltrans “Module 5”:
 - Forecasting Future Demand
- Modeling Future Trip Demand:
 - NCHRP 552
 - NCHRP 770
 - Caltrans B/C Tool 6.2
 - Hand Calculation Using GIS & Census Data
Understanding Access Sheds

- First and Last Mile Distances to Transit Defined by FTA in “FTA Report 0111”
 - Pedestrian Improvements within one-half mile of public transportation stop/station
 - Bicycle Improvements within three miles of public transportation stop/station

Note: Graphic shows 1-mile walk access shed, but FTA utilizes ½ mile shed.
Forecasting Future Demand

- Example Projection Using Population & Census Modal Data:
 - GIS Analysis: 90,000 households within 3-mile radius of project
 - Census: Journey to work rate of 0.5% (Bike)
 - $90,000 \times 0.005 = 450$ Potential Bike Commuters
 - Consider Adjustments for:
 - Increase for utilitarian and recreational trips
 - Buffer distance is too long or short
 - Other relevant adjustments (overall growth, school trips, gap closure, etc.)
ATP Infrastructure Application Discusses Gaps & Barriers:

Defined

- **Gap closure**: Construction of a missing segment of an existing facility in order to make that facility continuous.
- **Barrier**: Text Not Provided.

Therefore, local agency staff to justify (map & narrative) the barrier based on situation.
<table>
<thead>
<tr>
<th>Scoring Topic</th>
<th>Plan Application</th>
<th>Non- Infrastructure only Application</th>
<th>Infrastructure or Non-Infrastructure Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Small</td>
</tr>
<tr>
<td>A. Benefit to Disadvantaged Communities (DAC)</td>
<td>30</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>B. Need</td>
<td>20</td>
<td>40</td>
<td>53</td>
</tr>
<tr>
<td>C. Safety</td>
<td>N/A</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>D. Public Participation & Planning</td>
<td>25</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>E. Scope and Plan Consistency</td>
<td>N/A</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>F. Implementation & Plan Development</td>
<td>25</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>G. Context Sensitive & Innovation</td>
<td>N/A</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>H. Transformative Projects</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>I. Evaluation and Sustainability</td>
<td>N/A</td>
<td>10</td>
<td>N/A</td>
</tr>
<tr>
<td>J. Cost Effective</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>K. Leveraging</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>L. Corps (0 or -5)</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M. Past Performance (0 to -10)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
QUESTION #7

Part B: Narrative Questions
Detailed Instructions for Question #7

COST EFFECTIVENESS (0-5 POINTS)

A project's cost effectiveness is considered to be the relative costs of the project in comparison to the project's benefits as defined by the purpose and goals of the ATP. This includes the consideration of the safety and mobility benefit in relation to both the total project cost and the funds provided.

Explain why this project is the best use of State Resources?

(5 points max.) (Max of 500 words)
Primary Worksheets

- Instructions
- Definitions
- Project Information and Non-Infrastructure
- Program Information
- Model Inputs
- Results
Introduction Worksheets
- Title
- Instructions
- Definitions

Project Input & Results Worksheets
- 1a) Project Information
- 1b) Non-Infrastructure Program Info.
- 2) Model Inputs
- 3) Results

Analysis Worksheets
- Journey Quality
- Intersection Delay
- Intersection Safety
- Auto Accident Costs
- Health - Absenteeism
- Health - Reduced Mortality
- Emissions
- Final Calculations
- PARAMETERS

http://www.dot.ca.gov/hq/tpp/offices/eab/LCBC_Analysis_Model.html
INVESTMENT ANALYSIS

SUMMARY RESULTS

<table>
<thead>
<tr>
<th></th>
<th>Total Over 20 Years</th>
<th>Average Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life-Cycle Costs (mil. $)</td>
<td>$0.0</td>
<td></td>
</tr>
<tr>
<td>Life-Cycle Benefits (mil. $)</td>
<td>$0.0</td>
<td></td>
</tr>
<tr>
<td>Net Present Value (mil. $)</td>
<td>$0.0</td>
<td></td>
</tr>
<tr>
<td>Benefit / Cost Ratio:</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Rate of Return on Investment:</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Payback Period:</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>NON-INFRASTRUCTURE IMPLEMENTATION COST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Bike Program Impact Score</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Per Ped Program Impact Score</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>ITEMIZED BENEFITS (mil. $)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journey Quality</td>
<td>$0.0</td>
<td>$0.0</td>
</tr>
<tr>
<td>Additional Delay Savings</td>
<td>$0.0</td>
<td>$0.0</td>
</tr>
<tr>
<td>Additional Safety Benefits</td>
<td>$0.0</td>
<td>$0.0</td>
</tr>
<tr>
<td>Health Benefits</td>
<td>$0.0</td>
<td>$0.0</td>
</tr>
<tr>
<td>Emission Cost Savings</td>
<td>$0.0</td>
<td>$0.0</td>
</tr>
<tr>
<td>TOTAL BENEFITS</td>
<td>$0.0</td>
<td>$0.0</td>
</tr>
</tbody>
</table>

SRTS-SPECIFIC BENEFITS (mil. $)

<table>
<thead>
<tr>
<th></th>
<th>Total Over 20 Years</th>
<th>Average Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journey Quality</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Additional Delay Savings</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Additional Safety Benefits</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>TOTAL SRTS BENEFITS</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Factors that Differentiate Benefits and Performance Measures

- Safe Route to School: No
- Intersection Improvements on SRTS: No
- Programmatic Initiatives: No
- Recreational Benefits: 0

EMISSIONS REDUCTION

<table>
<thead>
<tr>
<th></th>
<th>Total Over 20 Years</th>
<th>Average Annual</th>
<th>Value (mil. $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO Emissions Saved</td>
<td>0</td>
<td>0</td>
<td>$0.0</td>
</tr>
<tr>
<td>CO₂ Emissions Saved</td>
<td>0</td>
<td>0</td>
<td>$0.0</td>
</tr>
<tr>
<td>NO₃ Emissions Saved</td>
<td>0</td>
<td>0</td>
<td>$0.0</td>
</tr>
<tr>
<td>PM₁₀ Emissions Saved</td>
<td>0</td>
<td>0</td>
<td>$0.0</td>
</tr>
<tr>
<td>PM₂·₅ Emissions Saved</td>
<td>0</td>
<td>0</td>
<td>$0.0</td>
</tr>
<tr>
<td>SO₂ Emissions Saved</td>
<td>0</td>
<td>0</td>
<td>$0.0</td>
</tr>
<tr>
<td>VOC Emissions Saved</td>
<td>0</td>
<td>0</td>
<td>$0.0</td>
</tr>
</tbody>
</table>
User Guide

- Model Overview
- Project Information Worksheets
 - Infrastructure
 - Non-Infrastructure
- Model Inputs Worksheet
- Results Worksheet

APPENDIX A: PROJECT EXAMPLE
UPGRADE EXISTING FACILITY AND CONSTRUCT NEW MULTI-USE TRAIL

For this example, let’s assume that we want to upgrade an existing 4-mile Class III bike route in Santa Barbara in Southern California to a Class II bike lane, but we also want to connect this lane with a new 2 mile to a fully-separated, paved multi-use Class I facility to better integrate an elementary school to the local neighborhood as part of a larger Safe Routes to School (SRTS) program.

As part of this program, we are going to add amenities to the existing location (e.g., lighting, pavement improvements, signage) to improve the quality of travel along the facility. We are also going to improve an arterial intersection along the path. Finally, as part of the overall program, we will provide two years of outreach to the school and to the general community.
Available to view online.

December 21, 2017
• Discussion of the Cal-B/C ATP Tool begins at 1:40:00 of the webinar.

January 16, 2018
• Discussion of the Cal-B/C ATP Tool begins at 1:41:30 of the webinar.

PowerPoint for webinars is also available online for download.
• The description of the ATP Cal B/C Tool begins on page 49 of the PowerPoint presentation, and a Bike/Ped. Upgrade and Expansion project example begins on page 61

Questions regarding the model or questions regarding the analysis of specific projects should be directed to Caltrans Economic Analysis Branch staff by email at eab@dot.ca.gov

http://www.dot.ca.gov/hq/tpp/offices/eab/LCBC_Analysis_Model.html
2019 Active Transportation Program
Orange County Workshops

[Logos of Caltrans, OCTA, OC Health Care Agency, Safe Routes to School National Partnership]
Part B: Narrative Questions

Detailed Instructions for Question #3

POTENTIAL FOR REDUCING THE NUMBER AND/OR RATE OF PEDESTRIAN AND BICYCLIST FATALITIES AND INJURIES, INCLUDING THE IDENTIFICATION OF SAFETY HAZARDS FOR PEDESTRIANS AND BICYCLISTS. (0-20 POINTS)

A. Describe the project location's history of pedestrian and bicycle collisions resulting in fatalities and injuries to non-motorized users, which this project will mitigate. (10 points max)

Applicants are encouraged to use the new UC Berkeley SafeTREC TIMS tool which was specifically designed for the ATP to produce these documents in an efficient manner. Applicants with access to alternative collision data tools and training can utilize their choice of methods/tools. Applicants must respond to question 1 or 2, and have the option to respond to both.

1. For applications using the TIMS ATP tool, attach the following:
 a. Collision Heat-map of the area surrounding the project limits - demonstrating the relative collision history of the project limits in relation to the overall jurisdiction/community's collision history
 b. Project Area Collision Map - identifying the past crash locations within the project limits
 c. Collision Summaries and collision lists/reports – demonstrating collision trends, collision types, and collision details
 d. For a Combined INI project - If the NI project area is different than the Infrastructure portion, the applicant may attach NI related heat-maps, etc in Attachment J
Online Tool: TIMS

Transportation Injury Mapping System

About TIMS

The Transportation Injury Mapping System (TIMS) has been developed over the past five-plus years by SafeTREC to provide quick, easy and free access to California crash data, the Statewide Integrated Traffic Records System (SWITRS), that has been geo-

Latest News

- Mar 16, 2018: 2017 SWITRS Data Added
- Nov 16: Site Updates and 2015-2016
Online Tool: TIMS ATP Module

Transportation Injury Mapping System

ATP Maps & Summary Data

The tool is designed to support the California Active Transportation Program (ATP), as well as active transportation users and practitioners throughout California. The tool utilizes interactive collision maps to allow users to track and document pedestrian and bicycle collisions and generate data summaries within specified project and/or community limits.

Note: First-time users of this tool are encouraged to view/print the step-by-step help instructions and follow along with them as they complete the steps within the tool.

Step 1: Select the County/City, Bike/Ped, Severity, and Years

```
County: Orange
City: Select a City
Include State Highway Related Collisions: Yes
Involved With: Pedestrian, Bicycle
```
Example Collision Analysis

Step 2: Identify your project area to develop a more localized Community Heat Map.

Select the size of your proposed project limits: Less than 3 miles across

- Click on the heat map below in the approximate center of your project limits.
- After the boundary is set, click the Show Community Heat Map button at the bottom of the page.
Step 3: Draw the project boundaries to get detailed collision map and data summaries

- Draw the boundaries using the drawing toolbar located at the top right corner of the map.
 - The boundary limits can be made up of any combination of lines, polygons, and that account for the total physical limits of the proposed project.
 - If needed for larger project, users can zoom-out to see a larger map.
- After drawing a boundary around the entire project limits, click Show Project Area Collision Map
Example Collision Analysis

Step 4: Review the project-specific collision map

- Ensure all of the project limits are included.
- If the project boundaries are not correct, go back and re-do Step 3.
- Once the Project Area Collision Map is confirmed to be accurate, then scroll down and review the various types of collision summary data, graphs, and tables provided.
Step 5: Review the collision summary data, graphs and tables provided.

The tool includes several distinct collision summaries to provide users with an in-depth understanding of the active transportation safety issues occurring within the specified project limits.

ATP-Tool Summaries:
- Summary Results: high-level summaries for pedestrians and bicyclists on a year-by-year basis.

Summary Results

<table>
<thead>
<tr>
<th>Involved With</th>
<th>Fatal</th>
<th>Severe Injury</th>
<th>Visible Injury</th>
<th>Complaint of Pain</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicycle</td>
<td>1</td>
<td>2</td>
<td>44</td>
<td>32</td>
<td>79</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>2</td>
<td>0</td>
<td>30</td>
<td>28</td>
<td>69</td>
</tr>
</tbody>
</table>

Bicycle Collisions Annual Growth (0% per year)

Pedestrian Collisions Annual Growth (12% per year)
Resources for Countermeasures

Potential Resources:

- OCTA Regional Bikeways Studies (most recent is OC Foothills Bikeways Strategy (April 2016))
- Caltrans Local Roadway Safety Manual
- FHWA Crash Modification Factors Clearinghouse http://www.cmfclearinghouse.org/index.cfm